Fourier series, XVIII. On a sequence of Fourier coefficients

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of a jump by Fourier and Fourier-Chebyshev series

‎By observing the equivalence of assertions on determining the jump of a‎ ‎function by its differentiated or integrated Fourier series‎, ‎we generalize a‎ ‎previous result of Kvernadze‎, ‎Hagstrom and Shapiro to the whole class of‎ ‎functions of harmonic bounded variation‎. ‎This is achieved without the finiteness assumption on‎ ‎the number of discontinuities‎. ‎Two results on determination of ...

متن کامل

On Fourier Coefficients of Eisenstein Series

In this paper we wish to prove that under certain conditions the Fourier coefficients of the Eisenstein series for an arithmetic group acting on a tube domain are all rational numbers. Let G be a connected, simply-connected, semisimple, and almost Q-simple linear algebraic group defined over the rational number field Q. Let R be the real number field. Then GR is connected, and we assume that if...

متن کامل

A Note on Fourier Coefficients of Poincaré Series

We give a short and “soft” proof of the asymptotic orthogonality of Fourier coefficients of Poincaré series for classical modular forms as well as for Siegel cusp forms, in a qualitative form.

متن کامل

Fourier coefficients of sextic theta series

This article focuses on the theta series on the 6-fold cover of GL2. We investigate the Fourier coefficients τ(r) of the theta series, and give partially proven, partially conjectured values for τ(π)2, τ(π2) and τ(π4) for prime values π.

متن کامل

A Note on the Fourier Coefficients and Partial Sums of Vilenkin-fourier Series

The aim of this paper is to investigate Paley type and HardyLittlewood type inequalities and strong convergence theorem of partial sums of Vilenkin-Fourier series. Let N+ denote the set of the positive integers, N := N+ ∪ {0}. Let m := (m0,m1, . . .) denote a sequence of the positive numbers, not less than 2. Denote by Zmk := {0, 1, . . . ,mk − 1} the additive group of integers modulomk. Define...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1957

ISSN: 0386-2194

DOI: 10.3792/pja/1195524995